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Red peppers are part of a group of 20 plant species

belonging to the genus Capsicum of the botanical family

Solanaceae. The recognition that capsaicin can activate the

transient receptor potential ion channel of the vanilloid type

(TRPV1) has led to the use of red pepper extracts, capsaicin,

and its analogs in pharmacological strategies for treating

various medical conditions, especially pain and other

neurological conditions. Interest in red pepper and capsaicin

for dietary strategies to improve health has increased. The

capacity of dietary capsaicin to manage gastrointestinal

distress is unclear, because of a lack of understanding of its

apparent contradictory actions within various segments of

the gastrointestinal tract. More promising is evidence linking

capsaicin and red pepper to improving weight loss and

weight maintenance as well as lessening glucose

intolerance and insulin resistance. However, progress in

substantiating these benefits is limited by the need for larger,

well-controlled human studies that can characterize

capsaicin/red pepper’s actions at doses more consistent with

typical human intakes. Likewise, insights into both

TRPV1-associated and TRPV1-independent mechanisms

related to any health benefits of dietary red pepper have only

begun to be explored. Nutr Today. 2011;46(1):33–47

R
ed peppers are part of a group of 20 plant species
belonging to the genus Capsicum of the botanical
family Solanaceae. Principal species used in foods

are Capsicum annuum L and Capsicum frutescens L. Other
species include Capsicum chinense Jacq, Capsicum baccatum
L, and Capsicum pubescens Ruiz & Pav. Red pepper is
native to South America and has been used by Native

Americans for medicinal and culinary purposes for
thousands of years. Capsicum fruits could be considered
one of the earliest uses of a food additive.1,2 There are
records of Christopher Columbus, upon his return to
Europe, naming a fruit he brought back from the New
World ‘‘red pepper.’’ Its uses in traditional medicines have
included treatments for sore throat, cough, toothache,
stomach ailments, rheumatism, wound healing, and
parasitic infections. Furthermore, the dried, ripe fruit
of the Capsicum species provides ingredients for
skin-conditioning agents, external analgesics, flavoring
agents, cosmetic fragrances, and repellant sprays.2Y8 There
is a cultivar of red pepper, CH-19 sweet, which lacks the
strong pungency or irritant properties of red pepper, yet
appears to maintain similar biological activities.9

Red pepper actually encompasses a variety of plants
with diverse common names that include chili pepper,
tabasco pepper, African chilies, paprika, and cayenne
pepper. Capsicum species can be eaten raw or dried, but
commonly are consumed in ground, powdered form or
in food supplemented with Capsicum oleoresin as an
additive.10 The consumption of Capsicum fruit varies
widely. For example, populations in Asia and Mexico
have estimated daily intakes of the fruit between 5 and
15g. This is equivalent to intakes of the active ingredient
capsaicin and related compounds (capsaicinoids) of
approximately 2.5 to 150 mg/d. Capsaicin is the
ingredient of red pepper that imparts the ‘‘hot’’ sensation
to the tongue. Per capita European and US Capsicum
consumption is estimated to be 0.05 to 0.5 g/d, or about
0.005 to 1.5 mg capsaicinoids per day.2 Red pepper
powder marketed in the United States may contain 3 to
4 mg capsaicinoids per gram. The capsaicin content of
red pepper can vary considerably, depending on its
pungency.4 For example, mild varieties of red pepper
may contain 0.14% capsaicinoids (ie, 7 mg capsaicin
per 5-g dried fruit) or less, whereas hot varieties may
contain amounts of capsaicinoids in dried fruits as high
as 0.6% to 1.0%. Information about the impact of food
preparation and processing is limited. It is known that

Nutrition Today, Volume 46 � Number 1 � January/February, 2011 33

Culinary Science

Copyright @ 201  Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.1



drying temperatures greater than 70-C to 80-C can
decrease red pepper pungency.2

The Capsicum fruit contains a number of pungent
capsaicinoid compounds and biologically active
constituents that are composed of the vanilloid derivative
capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) and
its analogs, dihydrocapsaicin, nordihydrocapsaicin,
homocapsaicin, and homodihydrocapsaicin.6,11

Capsaicin was isolated from Capsicum in 1846, and its
structure was determined in 1919.12 Capsaicin and
dihydrocapsaicin constitute the predominant portion
(90%) of these capsaicinoids. In plants, capsaicin
purportedly plays a role in preventing microbial
infections and suppressing unsuitable infestations13 as
well as being a deterrent to predators.14 In Ch-19 sweet
pepper, the 3 main analogs of capsaicin are capsiate,
dihydrocapsiate, and nordihydrocapsiate. Whereas
capsaicin’s chemical structure consists of a vanillyl
moiety conjugated to a fatty acid chain via an amide
bond, in capsiates the 2 moieties are conjugated via an
ester linkage.9 This seemingly small difference in
structure largely accounts for the dramatic decrease in
the pungency of CH-19 compared with other varieties of
red pepper.
We now know how capsaicin makes red pepper taste

hot, in part due to the discovery of the ‘‘capsaicin
receptor’’ or the transient receptor potential ion channel
of the vanilloid type (TRPV1) that is activated by
capsaicin. This receptor was cloned in 1997 and was
subsequently found to act as a molecular integrator of
painful, noxious (nociceptive) stimuli often precipitating
or accompanying inflammation. It is known that TRPV1
also responds to low pH (G5.5) and has a principal
function as a noxious heat sensor.15 TRPV1 is embedded
in primary afferent sensory nerve fibers and controls, as
its name implies, the entry of Ca++ and other ions, which
can lead to changes in nerve concentrations of
neuropeptides, such as substance P and calcitonin
gene-related peptide. These neuromodulators are partially
responsible for the sensitization and desensitization
phenomena associated with TRPV1 activities.15,16 TRPV1
is expressed in some protein receptors, called nociceptors,
which are present on sensory nerve terminals in the
skin and which respond to noxious stimuli (intense
mechanical, thermal, or chemical stresses) or other stimuli
that are capable of damaging normal tissues.17 When
activated, these sensory nerves carry pain signals and
similar information to the spinal cord and brain. A
paradoxical action of capsaicin is that it can both activate
and inactivate (or desensitize) sensory neurons containing
TRPV1. For example, with the skin, an initial topical
application of capsaicin causes an activation-associated
burning pain or itching sensation accompanied by
cutaneous vasodilation due to stimulation of sensitive

sensory neurons. Repeated applications lead to reduced
sensitivity and a refractory state or desensitization-linked
analgesia. Based on numerous test systems, it is clear that
in small doses capsaicin stimulates, whereas at high
doses it impairs, capsaicin-sensitive afferent nerves.15,18,19

Desensitization may lead to excessive Ca++ influx and
consequent death of TRPV1-containing nociceptive
neurons. This limits the usefulness of capsaicin and other
TRPV1 agonists for management of pain in this
context.4,7,20,21 In several areas of the brain,
TRPV1-containing neurons have been identified. Their
functions may include pain processing and central
thermoregulation, although all roles are unknown. It is
interesting that the nonpungent capsiate analogs of
capsaicin can activate TRPV1 and can induce nociceptive
responses when injected subcutaneously in mice. Yet
capsiates do not induce irritant properties when applied to
skin surfaces, the eyes, or oral cavity. The high
lipophilicity of capsiates and their instability in aqueous
environments may contribute to their lack of pungency.22

Also known as the vanilloid receptor, TRPV1 is
expressed in other organs and nonneuronal tissues, such
as bladder, kidney, spleen, heart, stomach, and even mast
cells. The tissue distribution of this receptor suggests
that it and its ligands may be involved in a wider variety
of physiological functions than originally assumed, not
only in sensing environmental stimuli, but also in
functions related to cell proliferation and immune
response.15,16,23 In fact, TRP ion channels, in general,
are believed to have evolved as important sensory
components of cells that can respond to numerous
stimuli, including temperature, touch, sound, osmolarity,
pheromones, taste, and pain.24 Furthermore, TRPV1
expression is an important component in various disease
states and conditions, such as inflammatory bowel
disease, fecal urgency and urinary incontinence,
gastrointestinal reflux disease, pancreatitis, interstitial
cystitis, airway diseases, and chronic pain.17,25 Whether
these changes in receptor expression contribute to or
are a consequence of these conditions is not yet
completely clear.

Many of capsaicin’s effects are mediated by binding to
TRPV1. Yet, capsaicin also has actions not related to its
activity as a TRPV1 ligand. Red pepper and capsaicin can
also affect the oxidant status of cells, can modulate the
cell cycle, and can alter the activities of proinflammatory
intermediates and intracellular signaling networks.26Y33

Overview of Potential Health Benefits

Interest in red pepper and capsaicin for dietary strategies
to improve health has recently increased, particularly in
relation to energy balance and body weight maintenance.
Table provides an overview of some of the potential
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Table. Summary of Scientific Research

Scientific Evidence for Selected Uses Rating

Pain relief (pharmacological use) Strong, convincing
Capsaicin as an agonist of TRPV1 has been studied extensively as a pharmacological

agent for pain relief. Capsaicin applied either as a cream or a patch is more effective in
treating some pain conditions than others. For example, topical application of capsaicin is
effective in managing postherpetic neuralgia. On the other hand, topical capsaicin may be
only poorly or moderately effective in managing neuropathic pain induced by other
conditions, and only may be useful for localized pain or as a third-line method of pain
management. Numerous reviews have summarized the conditions under which
capsaicin-containing pharmaceutical agents can best be used.20,25,34Y46 Recently,
capsaicin has been considered as an adjuvant in the treatment of postoperative
pain.18,47Y51 In general, enthusiasm for the topical use of capsaicin in clinical practice has
been diminished because of the need to cotreat with a local anesthetic (to minimize initial
burning, stinging sensations, and erythema), because of other transient adverse effects,
such as sneezing and coughing, and because of the need for repeated daily
applications.20 These disadvantages of capsaicin have led to development of TRPV1
antagonists for managing pain that are without these adverse effects.15,17

Effects on digestive tract Preliminary, inconclusive
Interest in possible effects of Capsicum components on the gastrointestinal (GI) tract in

part stems from the realization that TRPV1 is expressed in numerous neurons innervating the
GI tissues. Capsaicin-sensitive neurons are involved in the control of a variety of processes
regulating GI homeostasis, such as circulation, secretion, motility, and sensing noxious
stimuli (events capable of causing tissue damage), which provide an important mechanism
for communications between the GI tract and the brain. Although the presence of TRPV1
may contribute to several pathologies of the GI tract (such as irritable bowel disease), TRPV1
may also have beneficial functions in mediating some anti-inflammatory responses to
noxious agents.52,53 In this regard, capsaicin has been used as a pharmacological agent to
probe the role of TRPV1 in normal gut physiology and disease.19,53,54

The responses of the GI tract to capsaicin are complex, dose dependent, and
sometimes contradictory. An example of capsaicin’s apparently contradictory effects is
its role in dyspepsia and peptic ulcers. Red pepper and capsaicin are claimed to cause
stomach irritation and damage. Yet, there is preclinical and clinical evidence that capsaicin
may have beneficial actions in protecting against lesion formation in the gastric and
intestinal mucosa in part by alleviating oxidative stress.53,55Y61 Furthermore, capsiates
derived from sweet pepper were found to inhibit nuclear factor 0B activation and potently
suppress inflammation in vivo in the glandular epithelium in the bowel of dextran
sulfateYtreated mice.62 Although application of capsaicin to the human small intestine can
elicit pain, chronic oral administration of 2.5 g red pepper powder per day
(1.75 mg capsaicin per day) to human volunteers decreased abdominal pain and
symptoms of dyspepsia.53,57,63 The characterization of these opposing actions of
capsaicin on the GI mucosa needs to be more fully elucidated, especially as affected by
capsaicin dose, other dietary factors, length of capsaicin treatment and individual
variability in sensitivity.53,64

Obesity and diabetes Emerging, suggestive
Human energy balance studies
Body weight loss and maintenance of a healthy body mass index (BMI) can contribute

to reducing the prevalence of obesity. There is only limited epidemiological evidence
associating consumption of capsaicin with lower prevalence of obesity.65 The potential
for spicy foods to enhance energy expenditure and thus alter energy balance was
recognized as early as the 1980s, when it was reported that a meal containing 3 g of chili
sauce and 3 g mustard sauce acutely increased metabolic rate by 25%, compared with (continues)
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Table. Summary of Scientific Research, continued

Scientific Evidence for Selected Uses Rating

those individuals consuming a nonspiced control meal.66 The maximum increase in
metabolic rate occurred after 75Y90 min. Subsequent human studies focusing specifically
on red pepper and capsaicin provided additional support for a beneficial action of
capsaicin-containing spices on energy balance. For example, addition of 10 g red pepper
(30 mg capsaicin) to a meal increased energy expenditure in human subjects for a short
period (G4 h) after the meal.67,68 It is not clear from the literature whether people
habituate to this effect of capsaicin-containing spice intake. The thermogenic effect in
humans has been studied in few long-term studies, in part because, at least in white
populations, compliance is problematic.69 Similar results on energy balance were found
when capsaicin was evaluated in combination with other biologically active ingredients,
such as caffeine, calcium, and catechins, although this obscured the individual
contribution of capsaicin.67,68 The impact of red pepper specifically on oxidation of
carbohydrate, fat, and protein varied among studies.67,70Y72 Nonpungent capsinoid
compounds also have been reported to affect energy metabolism, sympathetic nervous
activity, and fat oxidation, although the responses are inconsistent.73Y77 Some of the
variability in human responses to intake of Capsicum constituents may be due not only to
dose effects but also to differences in BMI of subjects and the presence of genetic
variants among populations.75 Although substrate oxidation may be increased following
capsaicin administration, weight loss or weight maintenance may not necessarily be
significantly improved. For example, Lejeune et al78 observed that when capsaicin was
given at 135 mg/d for 3 mo following a 4-week weight-loss diet, weight gain was not
significantly different than placebo controls, although fat oxidation was higher in the
capsaicin group vs the placebo group.

Capsaicin’s effect on energy balance and substrate oxidation may be due to increased
sympathetic nervous system activity, although the findings in this regard are
inconsistent.69 Furthermore, it is unclear how much of this effect of capsaicin on energy
balance and weight changes is mediated by an agonist action on TRPV1.

Satiety may be another mediator of capsaicin’s effect on energy balance. For example,
administration of 0.9 g red pepper before each of 3 meals (2.25 mg capsaicin per meal) to
humans significantly increased satiety and suppressed 16-h energy intake approximately
10%.79 The researchers observed a stronger reduction when capsaicin was provided
orally in tomato juice as compared with ingestion of capsaicin-containing capsules, which
suggests a sensory effect of capsaicin. However, in another study, the impact of
capsaicin on decreased energy (fat) intake was determined to be independent of its spicy
sensation in the mouth.80 Similar satiety enhancement effects and reduction in energy
intake were observed by others when an intake of 6Y10 g red pepper per meal was
examined.81 This 6- to 10-g red pepper intake would be considered high for US and
European populations (usually G1-g/d intake). In contrast, levels of 8Y15 g/d have been
reported for Asian and Mexican populations. Similar to pungent red pepper cultivars, a
nonpungent variation of red pepper (CH-19 sweet pepper) and a combination of green tea
and capsaicin demonstrated energy-intakeYreducing effects.82 In contrast, a lunch
containing capsaicin (1.03-g red pepper equivalent to 80 000 Scoville heat units) did not
acutely impact satiety83 or energy expenditure. Interestingly, despite this lack of effect of
the capsaicin-containing lunch on energy balance, blood levels of the gut-derived
hormone GLP-1 increased, levels of ghrelin decreased, and no effect on circulating levels
of peptide YY was observed. Characterization of the effects of capsaicin on these
hormones is warranted for a better mechanistic insight into capsaicin’s potential actions
on satiety.
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Table. Summary of Scientific Research, continued

Scientific Evidence for Selected Uses Rating

Preclinical energy balance studies
There is evidence from preclinical studies that capsaicin and Capsicum frutescens also

influence energy homeostasis, adipogenesis, and obesity through a variety of
mechanisms including activation of the TRPV1 receptor. Capsaicin administration in
animal models affects energy intake, volume intake, and satiety control systems in a
complex manner.84Y90 Neonatal pharmacological administration of capsaicin to rodents is
known to selectively destroy and desensitize TRPV1-containing sensory neurons.63 Such
animals have altered energy and thermal homeostasis.91,92 Capsinoids administered
intragastrically (10 mg/kg body weight) to mice increased energy expenditure and
thermogenesis, in part by activating small intestine extrinsic (spinal and vagus) nerves.93

Early research in rats demonstrated that capsaicin desensitization of nerves led to a
long-term decrease in accumulation of body fat and brown adipose tissue. This loss of
function of capsaicin-sensitive nerves in treated animals resulted in an alteration in energy
balance conducive to leanness. This was suggested to be due to a suppression of the
age-associated increase in circulating calcitonin gene-related peptide (CGRP) from these
nerves that can enhance obesity.94,95 This pharmacological evidence for the role of the
capsaicin receptor in body fatness was supported by the observation that TRPV1-null
mice are protected from diet-induced obesity.96 There are additional experimental data
that capsaicin administration can alter adiposity, blood flow, and regulation of adipocyte
function.15,97,98 For example, dietary administration of capsaicin (0.01%) for 120 d
prevented obesity in male wild-type mice but not in TRPV1 knockout mice fed a high-fat
diet. This diet also affected TRPV1 regulation during adipogenesis.99 Of interest,
capsaicin may also be able to alter these obesity-associated processes independently of
TRPV1.100 Similar to findings for capsaicinoids, oral administration of capsiate to rats
resulted in decreased abdominal fat content and enhanced muscle oxidative capacity.
Uncoupling protein regulation in capsiate-treated animals was altered, but the changes
were inconsistent.101Y103 Oral capsiate administration to mice (10Y50 mg/kg body weight)
promoted energy metabolism, suppressed fat accumulation, and increased endurance
swimming activity, in part by stimulating vanilloid receptors.104Y106 Capsinoid and
capsaicin administration reduced serum lipid levels in hyperlipidemic rats.107

Human diabetes studies
Besides energy balance, capsaicin also has been reported to affect glucose and insulin

homeostasis. For example, in a small study of 10 women, consumption of 5-g fresh
C frutescens, an amount of red pepper not typically consumed in US and European diets,
significantly inhibited the elevation of plasma glucose levels at 30 minutes after an oral dose
of glucose, compared with drinking glucose alone.108 In contrast, the opposite response of
human plasma glucose levels to capsaicin intake was observed in another study.109 In a
study of 36 individuals consuming meals containing 30 g chili pepper (approximately 33 mg
capsaicin per day), a reduced amount of insulin was needed to control a postprandial
increase in glucose, an effect that was more apparent in subjects with BMI Q26.3 kg/m2 and
when chili was consumed regularly.110 In a recent crossover study of 12 healthy volunteers
in which the oral glucose tolerance test (OGTT) was performed, supplementation with 5 g
C frutescens resulted in a significant lowering of plasma glucose concentrations and
elevation of plasma insulin levels, compared with controls.111

Preclinical diabetes studies
There is good preclinical evidence that TRPV1 is involved in serum glucose regulation,

and, because TRPV1 is detected in the pancreas and beta islet cells, TRPV1 may be
important in insulin release and diabetes.52,97 Early studies in rats and mice demonstrated
that pharmacological treatment with high doses of capsaicin or similar drugs that inhibit
neural TRPV1 activity retarded aging-induced insulin resistance and counteracted (continues)
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Table. Summary of Scientific Research, continued

Scientific Evidence for Selected Uses Rating

diabetes-associated glucose intolerance.94,112 Subsequent reports describing
capsaicin-induced desensitization of TRPV1-containing sensory nerves on glucose
intolerance and insulin resistance in animal models are inconsistent. Dogs intravenously
administered 9 mg capsaicin exhibited decreased blood glucose levels and elevated plasma
insulin levels following the OGTT.113 Similar effects of capsaicin administration in mice
(100 mg/kg body weight, subcutaneously) on blood glucose levels were observed, although
no effect on plasma insulin concentration was noted after OGTT.114 Two studies in which
capsaicin was fed to rodents (0.5Y2.0 g C frutescens/100-g diet or 0.015% dietary capsaicin)
resulted in mixed effects on blood glucose levels after a glucose tolerance test.115,116

Furthermore, capsaicin treatment resulted in inconsistent responses in circulating insulin
concentrations. Diabetic rats fed a combination of red pepper and fermented soybeans
showed improved glucose homeostasis that was associated with decreased insulin
resistance, decreased hepatic fat storage, and activation of liver adenosine monophosphate
kinase.117 Capsaicin’s actions have been associated with a variety of mechanisms. It has
been proposed that capsaicin may modulate enzymes regulating glucose metabolism or may
affect hormone, neuropeptide, and cytokine levels. It also may impact insulin binding to its
receptor.97,113,114,116Y121 Differences in response to capsaicin or Capsicum spp may be a result
of differing dosing protocols, dietary regimens, and animal models used among studies.

Effects on cancer Preliminary, inconclusive
The impact of red pepper and capsaicin on cancer is inconsistent. The epidemiological

literature suggests that a high consumption of chili pepper is associated with increased risk
for stomach cancer,122Y124 liver cancer, bladder cancer, and pancreatic cancer, although
results are not always consistent.6,125Y130 In contrast, a case report suggested that
capsaicin may slow prostate-specific antigen doubling time.131 Capsaicin and
dihydrocapsaicin are mutagenic in an in vitro assay,33,132 and capsaicin can induce oxidative
DNA damage.125 Extracts of capsaicin have been reported to be cytotoxic and genotoxic.6

In contrast, a dietary mixture of capsaicinoids was found to be noncarcinogenic in a
long-term mouse study.133 The cancer-suppressive effects of red pepper on
tumorigenesis have been observed in animal models, although individual effects on
colon, stomach, and lung cancer are inconsistent.6,134Y141 In general, effects of Capsicum
and capsaicin on carcinogenesis in vivo are dose-dependent, and little is known
preclinically about cancer outcomes at doses consumed in the typical human diet.
Although animal studies on capsaicin and cancer are inconclusive, there is evidence
mostly from in vitro studies that capsaicin and other capsaicinoids and capsiates, alone or
in combination with other bioactive compounds, can cause cell death in a variety of
cancer cell lines.142Y156 Moreover, capsaicin and analogs have received attention as
potential cancer chemopreventive or chemotherapeutic agents.33,157Y162 Oral capsaicin in
a candy vehicle also has been reported to provide temporary relief for oral mucositis
secondary to chemotherapy and radiation therapy.163

Miscellaneous effects (primarily pharmacological uses) Preliminary, inconclusive
A subset of TRPV1-containing sensory neurons contain CGRP and substance P, which

are demonstrated vasodilators and natriuretic/diuretic agents. Although a report detected
a hypotensive effect of capsaicin when administered to SHR rats, there is little additional
information to substantiate any benefit of this vanilloid in treating hypertension.164

Capsaicin has the capacity to suppress cholera toxin production in Vibrio cholerae
cells.165 Capsaicin also can protect mouse neuromuscular junctions from the
neuromuscular effects of Clostridium botulinum neurotoxin A.166 On the other hand,
jalapeno peppers were unable to successfully hamper Helicobacter pylori infection167

or mitigate the adverse effects of HIV infection.168
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health benefits of capsaicin. The recognition that
capsaicin can activate TRPV1 has led to the use of
capsaicin and its analogs in pharmacological strategies
for treating various conditions, especially pain and other
neurological conditions. Although some of these uses
are strictly pharmacological, they nonetheless will be
examined along with those having potential dietary
benefits on health. Examples of various uses for capsaicin
and red pepper are presented, and an effort is made to
give an overview of the variety of scientific research on
this topic. Points of view for rating of evidence in each
category are based on consideration of cell culture and
animal and human clinical data from the peer-reviewed
scientific literature. A higher rating was given when there
were both preclinical and clinical data, and there was
consistency of findings among well-controlled human
studies.

Regarding drug uses of the chemical capsaicin, the
Food and Drug Administration’s Center for Drug
Evaluation and Research has determined it to be GRASE
(generally recognized as safe and effective) as an external
analgesic counterirritant when used as directed.6 Yet, in
some cases, it can be a skin irritant, so care needs to be
exercised by those with possible allergies to this plant.194

Capsaicin is GRAS (generally recognized as safe) for use
in cosmetic formulations that are not irritating.6

However, capsaicin is not GRAS for fever blister and
cold sore treatment. When administered topically,
capsaicin can enhance penetration of anti-inflammatory

agents, suggesting that caution should be exercised in
using capsaicin-containing cosmetic products.

Capsicum fruit is GRAS by the US Food and Drug
Administration’s Center for Food Safety and Applied
Nutrition for use in foods. Capsaicin is rapidly absorbed
from the stomach and small intestine. It is then quickly
metabolized in the liver by cytochrome P450 enzymes,
which may limit systemic, pharmacological effects of
enterally absorbed capsaicin.6,33,195

Early preclinical and clinical studies evaluating the
effect of feeding Capsicum on physiological and
toxicological end points have been reviewed previously.
In general, it was concluded that acute toxicity of
capsaicinoids as a food additive in humans was
negligible, in part because of the self-limiting sensory
responses accompanying overconsumption.2,20 More
recent studies indicate that paprika oleoresin elicited no
adverse effects in chronic and subchronic toxicity and
carcinogenicity studies.196,197 In a 26-week gavage study,
the no-adverse-effect level of dihydrocapsaite was
determined to be 1000 mg/kg per day for male and
female rats. Capsiate was determined not to be
teratogenic in rats and rabbits, not to be clastogenic,
and to exhibit extremely low likelihood of inducing
genotoxicity. Orally administered capsinoids were not
detected in the systemic circulation of the animals.198Y204

Healthy human volunteers ingesting a single oral dose
of capsinoids (15 or 30 mg per person) obtained from
CH-19 sweet pepper exhibited no adverse outcomes or

Table. Summary of Scientific Research, continued

Scientific Evidence for Selected Uses Rating

The clinical and preclinical efficacy of topical capsaicin in the pharmacological treatment
of osteoarthritis is inconsistent.169Y174 There is limited evidence for the use of capsaicin in
the management of fibromyalgia.175 Capsaicin has been considered for use in
pharmacological strategies to manage urinary tract dysfunctions.53,176Y178 Topical
applications of capsaicin also was reported to effectively treat hemodialysis-induced
pruritus in patients with end-stage renal disease.179

In mice, capsaicin administration stimulated sensory neurons in the brain and improved
cognitive function, effects associated with increased insulinlike growth factor 1 (IGF-1)
and CGRP levels, as well as enhanced angiogenesis and neurogenesis.180 Capsaicin
also demonstrated a neuroprotective effect in improving brain and liver dysfunction in
a mouse model of hepatic failure.181 Intranasal application of capsaicin has been
demonstrated to lessen migraine attacks in chronic migraine patients.182

Although known to be a tussive agent, capsaicin also has been studied for treatment of
tonsillitis and rhinitis.52,183Y187 Capsicum has been reported to prevent postoperative sore
throat188 and postoperative nausea and vomiting.189,190 Capsiates may be useful in
triggering a swallowing reflex in elderly patients with aspiration pneumonia.191

Topical application of capsaicin and related compounds may stimulate IGF-1 production
in hair follicles of skin, potentially promoting hair growth, and may be useful in the
treatment of skin disorders of patients with growth hormone deficiency and in the
elderly.192,193
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clinically significant changes in physical or biochemical
outcome measures.204

There is a potential for drug-food interactions in light of
capsaicin’s capacity to affect the function and expression
of p-glycoprotein and multidrug resistanceYassociated
proteins.205,206 Of interest is that capsaicin and
capsaicinoids inhibit cytochrome P450 3A4 in human
liver microsomes in vitro.207 This is noteworthy, because
P450 3A4 inhibition by dietary polyphenols has been
known to inhibit the in vitro metabolism of clinical
drugs.208 The clinical relevance of this finding with
capsaicinoids, however, is unknown.
There have been anecdotal findings and data from

small studies that red pepper consumption may be
associated with adverse gastrointestinal effects and rectal
hypersensitivity.55,56,209Y211 A recent prospective,
randomized, placebo-controlled, double-blind, crossover
trial involving 43 subjects found that consumption of
red pepper powder (3.0 g/d) exacerbated symptoms
of acute anal fissures.210

There are reports of arterial hypertensive crisis
following acute ingestion of chili peppers.212Y214 and one
observation that use of a topical capsaicin patch can
lead to coronary vasospasm and acute myocardial
infarction.215 The acute effects of dihydrocapsaicin and
capsaicin on white blood distribution and any
subsequent changes in the effectiveness of the immune
response in rats deserve further evaluation.216 The
prevalence of and basis for these adverse events warrant
further scrutiny.
Although few concerns about potential toxicity in

humans have been identified in short-term feeding
studies, long-term consequences of red pepper and
capsaicinoid intakes in humans need to be more clearly
evaluated. In particular, future human trials examining
the impact of capsaicinoids, capsinoids, and red pepper
consumption on health end points need to better
characterize the effects of dose, form, and duration
of intake.

Summary

Capsaicin has a demonstrated benefit as a topical
pharmaceutical to mitigate pain and other neurological
conditions. The capacity of dietary capsaicin to manage
gastrointestinal distress is unclear, because of lack of
understanding of its apparent contradictory actions
within various segments of the gastrointestinal tract.
More promising are data linking capsaicin and
red pepper to improving weight loss and weight
maintenance, as well as lessening glucose intolerance and
insulin resistance. Moreover, use of the less-pungent
capsiates from sweet pepper cultivars may open up
avenues for application of these nonpungent Capsicum

components to health promotion strategies without
limitations associated with poor compliance. However,
progress in substantiating benefits in these areas is
limited by the need for larger, well-controlled human
studies that can characterize capsaicin/red pepper at
doses more consistent with typical human intakes.
Furthermore, the contributions to variability in outcomes
due not only to dose, but also to length of red pepper
exposure, specific dietary protocols, subject characteristics,
and genetic aspects of responsiveness, need to be more
thoroughly defined. Likewise, insights into both
TRPV1-associated and TRPV1-independent mechanisms
for any health benefits of dietary red pepper have only
begun to be explored.
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